Unraveling the enhanced photocatalytic activity and phototoxicity of ZnO/metal hybrid nanostructures from generation of reactive oxygen species and charge carriers.

نویسندگان

  • Weiwei He
  • Haohao Wu
  • Wayne G Wamer
  • Hyun-Kyung Kim
  • Jiwen Zheng
  • Huimin Jia
  • Zhi Zheng
  • Jun-Jie Yin
چکیده

An effective way for promoting photocatalytic activity of a semiconductor is deposition of noble metal nanoparticles (NPs) onto it. In this paper, we deposited Ag and Pd onto ZnO NPs to form ZnO/Ag and ZnO/Pd hybrid nanostructures. It was found that both Ag and Pd nanocomponents can greatly enhance the photocatalytic activity and phototoxicity of ZnO toward human skin cells. Using electron spin resonance spectroscopy with spin trapping and spin labeling techniques, we observed that either deposition of Ag or Pd resulted in a significant increase in photogenerated electrons and holes and production of reactive oxygen species including hydroxyl radicals, superoxide, and singlet oxygen. We compared the enhancing effects of Ag and Pd and found that Pd is more effective than Ag in promoting the generation of hydroxyl radicals and holes and the photocatalytic activity of ZnO. Conversely, Ag is more effective than Pd in enhancing electron transfer and the generation of superoxide and singlet oxygen. The mechanism underlying the differences in the effects of Ag and Pd may be related to differences in Fermi levels for Ag and Pd and band bending accompanied by effects on Schottky barriers. The results of these studies provide information valuable for designing hybrid nanomaterials having photocatalytic and photobiological activities useful for applications such as water purification and formulation of antibacterial products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sonochemical Green Method for Preparation of Mg-Doped ZnO Nanostructures in Water with Enhanced Photocatalytic Activity

In this work, Mg-doped ZnO nanostructures were prepared in water under ultrasonic irradiation for 60 min without using any organic compounds or post preparation treatments. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-ray (EDX), diffuse reflectance spectroscopy (DRS...

متن کامل

Photocatalytic Reactive Oxygen Species Formation by Semiconductor-Metal Hybrid Nanoparticles. Toward Light-Induced Modulation of Biological Processes.

Semiconductor-metal hybrid nanoparticles manifest efficient light-induced spatial charge separation at the semiconductor-metal interface, as demonstrated by their use for hydrogen generation via water splitting. Here, we pioneer a study of their functionality as efficient photocatalysts for the formation of reactive oxygen species. We observed enhanced photocatalytic activity forming hydrogen p...

متن کامل

Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures

We studied the photocatalytic properties of rational designed TiO2-ZnO hybrid nanostructures, which were fabricated by the site-specific deposition of amorphous TiO2 on the tips of ZnO nanorods. Compared with the pure components of ZnO nanorods and amorphous TiO2 nanoparticles, these TiO2-ZnO hybrid nanostructures demonstrated a higher catalytic activity. The strong green emission quenching obs...

متن کامل

Fabrication of Magnetically Recoverable Nanocomposites by Combination of Fe3O4/ZnO with AgI and Ag2CO3: Substantially Enhanced Photocatalytic Activity under Visible Light

We report highly efficient magnetically recoverable photocatalysts through combination of Fe3O4/ZnO with AgI and Ag2CO3, as narrow band gap semiconductors. The resultant photocatalysts were characterized by XRD, EDX, SEM. TEM, UV–vis DRS, FT-IR, PL, and VSM instruments. Under visible-light illumination, the nanocomposite with 1:6 weight ratio of Fe3O4 to ZnO/AgI/Ag2CO3 exhibited superior activi...

متن کامل

Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm.

Band gap narrowing is important and advantageous for potential visible light photocatalytic applications involving metal oxide nanostructures. This paper reports a simple biogenic approach for the promotion of oxygen vacancies in pure zinc oxide (p-ZnO) nanostructures using an electrochemically active biofilm (EAB), which is different from traditional techniques for narrowing the band gap of na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 17  شماره 

صفحات  -

تاریخ انتشار 2014